DNA damage stabilizes interaction of CSB with the transcription elongation machinery
نویسندگان
چکیده
The Cockayne syndrome B (CSB) protein is essential for transcription-coupled DNA repair (TCR), which is dependent on RNA polymerase II elongation. TCR is required to quickly remove the cytotoxic transcription-blocking DNA lesions. Functional GFP-tagged CSB, expressed at physiological levels, was homogeneously dispersed throughout the nucleoplasm in addition to bright nuclear foci and nucleolar accumulation. Photobleaching studies showed that GFP-CSB, as part of a high molecular weight complex, transiently interacts with the transcription machinery. Upon (DNA damage-induced) transcription arrest CSB binding these interactions are prolonged, most likely reflecting actual engagement of CSB in TCR. These findings are consistent with a model in which CSB monitors progression of transcription by regularly probing elongation complexes and becomes more tightly associated to these complexes when TCR is active.
منابع مشابه
Cooperation of the Cockayne syndrome group B protein and poly(ADP-ribose) polymerase 1 in the response to oxidative stress.
Cockayne syndrome (CS) is a rare genetic disorder characterized as a segmental premature-aging syndrome. The CS group B (CSB) protein has previously been implicated in transcription-coupled repair, transcriptional elongation, and restoration of RNA synthesis after DNA damage. Recently, evidence for a role of CSB in base excision repair of oxidative DNA lesions has accumulated. In our search to ...
متن کاملRNA polymerase II bypass of oxidative DNA damage is regulated by transcription elongation factors.
Oxidative lesions represent the most abundant DNA lesions within the cell. In the present study, we investigated the impact of the oxidative lesions 8-oxoguanine, thymine glycol and 5-hydroxyuracil on RNA polymerase II (RNA pol II) transcription using a well-defined in vitro transcription system. We found that in a purified, reconstituted transcription system, these lesions block elongation by ...
متن کاملTranslocation of Cockayne syndrome group A protein to the nuclear matrix: possible relevance to transcription-coupled DNA repair.
Transcription-coupled repair (TCR) efficiently removes a variety of lesions from the transcribed strand of active genes. By allowing rapid resumption of RNA synthesis, the process is of major importance for cellular resistance to transcription-blocking genotoxic damage. Mutations in the Cockayne syndrome group A or B (CSA or CSB) gene result in defective TCR. However, the exact mechanism of TCR...
متن کاملHuman Cockayne syndrome B protein reciprocally communicates with mitochondrial proteins and promotes transcriptional elongation
Cockayne syndrome (CS) is a rare human disorder characterized by pathologies of premature aging, neurological abnormalities, sensorineural hearing loss and cachectic dwarfism. With recent data identifying CS proteins as physical components of mitochondria, we sought to identify protein partners and roles for Cockayne syndrome group B (CSB) protein in this organelle. CSB was found to physically ...
متن کاملDifferent effects of CSA and CSB deficiency on sensitivity to oxidative DNA damage.
Mutations in the CSA and CSB genes cause Cockayne syndrome, a rare inherited disorder characterized by UV sensitivity, severe neurological abnormalities, and progeriod symptoms. Both gene products function in the transcription-coupled repair (TCR) subpathway of nucleotide excision repair (NER), providing the cell with a mechanism to remove transcription-blocking lesions from the transcribed str...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 166 شماره
صفحات -
تاریخ انتشار 2004